
This article was downloaded by:[Fadzil, M. H. Ahmad]
On: 11 November 2007
Access Details: [subscription number 784154394]
Publisher: Informa Healthcare
Informa Ltd Registered in England and Wales Registered Number: 1072954
Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Medical Engineering &
Technology
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713736867

Extraction and reconstruction of retinal vasculature
M. H. Ahmad Fadzil a; Lila Iznita Izhar a; P. A. Venkatachalam a; T. V. N.
Karunakar b
a Intelligent Imaging Technology Group, Electrical and Electronic Engineering
Programme, Universiti Teknologi PETRONAS, Tronoh, Perak, Malaysia
b Ophthalmology Department, General Hospital, Kuala Lumpur, Malaysia

Online Publication Date: 01 November 2007
To cite this Article: Fadzil, M. H. Ahmad, Izhar, Lila Iznita, Venkatachalam, P. A.
and Karunakar, T. V. N. (2007) 'Extraction and reconstruction of retinal vasculature',
Journal of Medical Engineering & Technology, 31:6, 435 - 442
To link to this article: DOI: 10.1080/03091900601111201

URL: http://dx.doi.org/10.1080/03091900601111201

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article maybe used for research, teaching and private study purposes. Any substantial or systematic reproduction,
re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly
forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be
complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be
independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or
arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713736867
http://dx.doi.org/10.1080/03091900601111201
http://www.informaworld.com/terms-and-conditions-of-access.pdf


D
ow

nl
oa

de
d 

B
y:

 [F
ad

zi
l, 

M
. H

. A
hm

ad
] A

t: 
06

:2
8 

11
 N

ov
em

be
r 2

00
7 

Extraction and reconstruction of retinal vasculature

M. H. AHMAD FADZIL{, LILA IZNITA IZHAR{, P. A. VENKATACHALAM{ and
T. V. N. KARUNAKAR{

{Intelligent Imaging Technology Group, Electrical and Electronic Engineering Programme,
Universiti Teknologi PETRONAS, Bandar Sri Iskandar, 31750 Tronoh, Perak, Malaysia.

{Ophthalmology Department, General Hospital, Kuala Lumpur, Malaysia.

Information about retinal vasculature morphology is used in grading the severity and

progression of diabetic retinopathy. An image analysis system can help ophthalmologists

make accurate and efficient diagnoses. This paper presents the development of an image

processing algorithm for detecting and reconstructing retinal vasculature. The detection

of the vascular structure is achieved by image enhancement using contrast limited

adaptive histogram equalization followed by the extraction of the vessels using bottom-

hat morphological transformation. For reconstruction of the complete retinal vascu-

lature, a region growing technique based on first-order Gaussian derivative is developed.

The technique incorporates both gradient magnitude change and average intensity as the

homogeneity criteria that enable the process to adapt to intensity changes and intensity

spread over the vasculature region. The reconstruction technique reduces the required

number of seeds to near optimal for the region growing process. It also overcomes poor

performance of current seed-based methods, especially with low and inconsistent contrast

images as normally seen in vasculature regions of fundus images. Simulations of the

algorithm on 20 test images from the DRIVE database show that it outperforms many

other published methods and achieved an accuracy range (ability to detect both vessel

and non-vessel pixels) of 0.91 – 0.95, a sensitivity range (ability to detect vessel pixels) of

0.91 – 0.95 and a specificity range (ability to detect non-vessel pixels) of 0.88 – 0.94.

Keywords: Retinal vasculature detection and reconstruction; Region growing; Gaussian

derivative

1. Introduction

Diabetic retinopathy (DR), a long term complication of

diabetes due to the damage on the retinal vasculature, is the

leading cause of blindness in the world. In Malaysia, the

diabetic population has increased over four-fold from

300 000 in 1996 [1] to nearly 1.4 million in 2005 [2].

About 30% of the diagnosed diabetic population in 1996

has retinopathy and each year 1%develops sight-threatening

retinopathy [1]. Themajor problem in the early detection and

treatment of DR is the large number of patients, which can

hamper effective screening using direct ophthalmoscopy.

Analysing and interpreting fundus images have be-

come necessary and important diagnostic procedures in

ophthalmology. Among the features in ocular fundus

images, the structure of the retinal vessel plays an

important role in revealing the severity of DR and other

eye related diseases, besides being taken as landmarks for

image-guided laser treatment of choroidal neovasculariza-

tion and for localization of optic nerve, fovea and lesions

[3 – 5]. As well as enabling the detection of abnormal

growth of new vessels, detection of retinal vasculature can

also assist in the analysis of the capillary free zone and the

foveal avascular zone (FAZ) [6,7].

Reliable methods are needed to extract vascular struc-

tures for analysis. Generally, there are four main

approaches that have been identified: the edge detection

approach [8,9], the matched filter approach [5,10,11],

*Corresponding author. Email: fadzmo@petronas.com.my

Journal of Medical Engineering & Technology, Vol. 31, No. 6, November/December 2007, 435 – 442

Journal of Medical Engineering & Technology
ISSN 0309-1902 print/ISSN 1464-522X online ª 2007 Informa UK Ltd.

http://www.tandf.co.uk/journals
DOI: 10.1080/03091900601111201



D
ow

nl
oa

de
d 

B
y:

 [F
ad

zi
l, 

M
. H

. A
hm

ad
] A

t: 
06

:2
8 

11
 N

ov
em

be
r 2

00
7 

the tracking-based approach [5,10,12] and the mathema-

tical morphology transformation approach [3,4,13,14]. The

edge detection approach suffers from poor performance in

low contrast fundus images. It is reported in [3,10,11] that,

to overcome this problem, an inverted Gaussian-shaped

zero-sum matched filter is used. Even though primary

(large) vessels are successfully detected, this approach tends

to give false detection at the boundary of bright regions.

The tracking-based approach is an extension of the edge

detection whereby the edge map provides location of the

vessel borders. Missing edges especially at bifurcations

create discontinuity in vessel tracking that require edge-line

regeneration methods. An algorithm that combines mor-

phological filters and curvature evaluation to segment

vessels has been developed [4]. A combination of top-hat

transformations and Laplacian transforms was used to

highlight vessels. This approach generates a more detailed

description of the vascular structure. However, it tends

to miss important bifurcation and intersection points.

To overcome this problem, a dynamic local region growing

is used to recover and reconstruct missing and partially

detected vessels [3].

The objective of this research is to develop a computer

vision based diagnostic tool that enables ophthalmologists

to screen and grade DR. In this paper, the development of

an algorithm to detect and reconstruct complete retinal

vasculature in low and inconsistent contrast colour fundus

images (no contrast agent used) is discussed.

2. Analysis of retinal vasculature

In this work, enhancement, extraction and reconstruction

of retinal vasculature using image analysis techniques are

being developed. A flowchart for the image analysis is

shown in figure 1. The process is divided into two blocks,

vessel extraction and vessel reconstruction. Figure 2 shows

three types of reference images used, namely reference

model image A, reference model image B and reference

colour fundus image.

Reference model image A is designed to measure the

performance of the vessel extraction algorithm for various

sizes of vessels at varying levels of contrast. It is also

designed to measure the performance of region growing in

vessel reconstruction. There are 11 vertical lines with

different widths ranging from 2 to 12 pixels. Each line has

seven different intensity regions; the darkest (grey-level

value¼ 52) at the bottom to the lightest (grey-level

value¼ 64) at the top. Thus, the contrast level for each

region in each line ranges from 4 to 16 in intensity between

the lines and background. The background is uniform at a

higher intensity level (grey-level value¼ 68) relative to the

lines. Reference model image B represents the fundus image

with artificial optic disk and FAZ and curving lines

representing vessels with width ranging from 2 to 12 pixels

(7 – 42 mm). The background is not uniform but is

maintained at a higher intensity level relative to the vessels.

The fundus image used is a typical colour image of the

retina of DR patients. In the development of the algorithm,

reference model images A and B are used initially before

applying the reference fundus image. In this way, the

performance of the algorithm can be determined and any

problems can be detected.

2.1. Vessel extraction

The green band image is used, as the vessels are relatively

darker compared to the normal intensity image. For pre-

processing, a 363 mean filter is applied to the green image

to reduce the noise effects and false segmentation on the

boundary of camera’s aperture [15]. Contrast limited

adaptive histogram equalization (CLAHE) [16] is then

applied to enhance vessels. CLAHE partitions the

image into contextual regions and applies the histogram

equalization to each one. This process evens out the

distribution of used grey-level values and thus makes

hidden features of the image more visible. By applying

CLAHE to the reference model image B, it can be seen that

in figures 3 and 4 vessels in both bright and dark regions are

contrast-enhanced equally well, whilst the typical contrast

stretching is not.

In this work, the extraction of dark objects (vessels)

on background of higher intensity level is achieved by using

a morphological filter called bottom-hat, expressed as

follows:

Dark objectsðvesselsÞ : Bottom-hatðI;BÞ ¼ ðI � BÞ � I

ð1Þ

Figure 1. A flowchart of the algorithm.

436 M. H. Ahmad Fadzil et al.
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In bottom-hat, morphological closing (.) of the input

image, I(x,y) by a structuring element, B(x,y) is performed

followed by subtraction of the resultant image by the input

image. Note that the closing operation is defined as the

dilation of an object followed by the erosion of the dilated

object using the same structuring element.

The structuring element (SE) used is of linear type [3,4].

The size of the element is critical because portions of vessels

with profiles larger than the SE will be excluded. However,

using larger SE can cause more objects representing non-

vessels to be extracted. The primary vessels are 10 – 12

pixels wide. The branching and intersection points of

vessels are wider by 2 – 3 pixels than the vessels. To ensure

that the primary vessels (that are normally 10 – 12 pixel

wide) including their branching and intersection points can

be extracted, an SE size of 15 is used. In this process, the SE

is posed in different orientations using a rotating angle (at

incremental of 158) from 0 to 1808. A sum of bottom-hats

using 12 linear SEs allows all vessels to be extracted in low

local contrast regions regardless of their sizes and direc-

tions, as shown:

Sum of Bottom-hatðI;B12Þ ¼
X12

i¼1
ðI � BiÞ � Ið Þ ð2Þ

To eliminate image artefacts in the enhanced background

(refer to figure 5), a noise removal process is carried out.

Here, we obtain the background image, BG by applying

averaging filter of size 40640 pixels on the sum of bottom-

hat image. In the removal process, the sum of bottom-

hat image is subtracted by the background image, BG.

Contrast stretching is applied after background noise

removal to improve the contrast of extracted vessels. Here,

a linear scaling function is applied to the image pixel values

so that the range of intensity values of the image is spanned

over a desired range of values. Figure 5 shows the images

after applying bottom-hat and subsequent application of

background noise removal with contrast stretching on the

reference images.

2.2. Vessel reconstruction

Morphological transformations may miss out some im-

portant bifurcations and intersection points, which are

required for a complete morphology of vascular structure.

Figure 2. (a) Reference model image A; (b) reference model

image B; (c) reference fundus image.

Figure 3. Reference model image B after (a) contrast

stretching; (b) CLAHE.

Figure 4. Reference fundus image after (a) contrast

stretching; (b) CLAHE.

Extraction and reconstruction of retinal vasculature 437
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Furthermore, there are still some remaining background

noise and artefacts at the background. To overcome this, a

morphology reconstruction process is performed based on

region growing. Region growing has been known to

perform well on segmenting foreground from a noisy

background image. At an earlier stage of this work, seed-

based region growing (SRG) [17,18] was applied to

reconstruct the retinal vasculature. Figure 6 compares the

application of SRG with one seed pixel placed on each

vessel line and five seed pixels placed on each vessel line for

reference model image A.

Figure 7 compares the application of SRG with five seeds

and 16 seeds for reference model image B. Figure 8

compares the application of SRG with seven seed pixels

and 18 seed pixels for the reference fundus image. SRG

performs better with more initial seed pixels.

However, in applications such as fundus images, the

initial placement of seed pixels can be time consuming (due

to selecting appropriate number of seed pixels and their

locations) and can lead to inconsistent results. It is also

reported that SRG can cause over segmentation at vessel

boundaries (also referred to as the partial volume effect)

[19,20].

A gradient-based region growing (GRG) method has

been developed to overcome the above problems asso-

ciated with SRG and to improve the accuracy of vessel

reconstruction. In GRG two homogeneity criteria are used,

namely change of gradient magnitude and average intensity

change. The gradient magnitude change is used to identify

ambiguous boundaries between homogeneous regions and

to resolve the partial volume effect problem on the

boundary [19]. In GRG, the image with extracted vessels

I(x, y) is convolved with a first order Gaussian derivative

kernel to give the gradient image, ID(x, y) followed by

region growing. The gradient image or first-order Gaussian

derivative is estimated as follows:

IDðx; yÞ ¼ Iðx; yÞ � @Gðx; y; sÞ
@x@y

; ð3Þ

Gðx; y; sÞ ¼ 1

2ps2
exp

�ðx2þy2Þ
2s2 ð4Þ

Figure 5. Vessel extraction of reference images (a – c) after

applying sum of bottom-hat, and (d – f) after subsequent

application of background noise removal.

Figure 6. SRG resultant images of reference model image

A: (a) one seed pixel for each vessel line; (b) five seed pixels

for each vessel line.

Figure 7. SRG resultant images of reference model image

B: (a) five seed pixels; (b) 16 seed pixels.

Figure 8. Vessel reconstruction using SRG on the reference

fundus image: (a) seven seed pixels; (b) 18 seed pixels.

438 M. H. Ahmad Fadzil et al.
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By using the Gaussian derivative kernel, sensitivity to

noise in the gradient image is reduced. The kernel size

is set to 15615 pixels and s is set to 0.5 to ensure

accurate identification of vessel border. From analysis on

gradient images, the ranges of gradient magnitude change,

GMAGmin at the vessel border, are obtained; 70 – 228 for

reference model image A and 86 – 230 for reference model

image B and fundus images.

A 363 window is centred at the seed pixel, Sx,y, and the

average intensity value Ax,y in the window is computed to

obtain image, Iavg(x,y), as the other homogeneity criterion.

If the difference in intensity between the seed pixel and the

average value is smaller than a threshold at a particular

point, i.e.:

jSx;y � Iavgðx; yÞj � T�intx;y ð5Þ

and if at seed-pixel location Sx,y the gradient magnitude

change is smaller than GMAGmin, i.e.:

at Sx;y : IDðx; yÞ < GMAGmin ð6Þ

the seed pixel is labelled homogeneous to vessel pixels and

the process is repeated for the next seed pixel location, or

else the seed pixel is labelled as a background pixel and the

process stops. The GMAGmin is set to 100 for reference

model A and 150 for reference model B and fundus images.

The threshold T_intx,y is defined as follows:

T�intx;y ¼ aIavgðx; yÞ; a ¼ 0:5 � 0:7 ð7Þ

Figure 9 depicts the gradient images of reference images

A and B and the reference fundus image. In GRG, the

selected homogeneity criteria that combine the intensity

value with the gradient magnitude change enable the region

growing process to adapt to intensity changes of the vessels.

Therefore fewer seed pixels (fewer than 10 seed pixels) are

required for GRG to perform vessel reconstruction, unlike

SRG, which requires more than twice the amount of seed

pixels required by GRG.

Figure 10(a) shows the resultant image of GRG with a

seed pixel for each of the vessel lines in image A. Each

vessel is successfully grown from an initial seed pixel placed

in the region with intensity level of 73 to the region with

intensity level of 255. Thus, the region growing process is

able to adapt to intensity changes within vessel regions.

Similar results are obtained for reference model image B

and the reference fundus image, as shown in figures 10(b)

and (c). For reference model image B, five seed pixels are

placed (figure 7(a)). For the reference fundus image, the

seed pixels are chosen among vessel pixels located near the

vessel ends (figure 8(a)). Here it can be seen that the GRG

technique outperforms SRG in reconstructing the complete

vessel network (compare figure 10(b) with figure 7 and

figure 10(c) with figure 8).

3. Performance analysis

For performance analysis, the developed algorithm is tested

and evaluated on 20 non-mydriatic images from the

DRIVE database [21,22]. The images are captured in

digital form from a Canon CR5 non-mydriatic 3CCD

camera at 458 field of view (FOV). The images are of size

5846565 pixels, 8 bits per colour channel. The FOV of

each image is circular with a diameter of approximately

540 pixels. These images have been hand-labelled

(manually segmented) by three observers trained by an

ophthalmologist. The images used in this work are

Figure 9. Gradient images by first-order gradient derivative

for reference model: (a) image A; (b) image B; (c) fundus

image.

Extraction and reconstruction of retinal vasculature 439



D
ow

nl
oa

de
d 

B
y:

 [F
ad

zi
l, 

M
. H

. A
hm

ad
] A

t: 
06

:2
8 

11
 N

ov
em

be
r 2

00
7 

manually segmented twice, resulting in sets A and B. In set

A, 12.7% of pixels were marked as vessel, against 12.3%

for set B. In the analysis, reconstructed retinal vasculatures

of the 20 test images are compared against the segmenta-

tions of set A.

In the performance analysis, the detected vessels classi-

fied as vessels are considered as true positives (TP) and the

detected vessels classified as non-vessels are considered as

false positives (FP). For true negatives (TN), detected non-

vessels that are classified as non-vessels will be considered

whereas for false negatives (FN), detected non-vesssels that

are classified as vessels will be considered [23].

Let C(x,y) be the automatically reconstructed (segmen-

ted) image by the algorithm, and G(x,y) be the manually

segmented image of set A from the DRIVE database. The

fraction of true positive (TP) and false positive (FP) and

true negative (TN) and false negative (FN) negative are

determined as follows [23]:

TN fraction :

P
all x;y Cðx; yÞ ¼ Gðx; yÞ ¼ 0½ �
P

all x;y ðCðx; yÞ ¼ 0Þ½ � : ð8Þ

TP fraction :

P
all x;y Cðx; yÞ ¼ Gðx; yÞ ¼ 1½ �
P

all x;y ðCðx; yÞ ¼ 1Þ½ � : ð9Þ

FP fraction :

P
all x;y ðCðx; yÞ ¼ 1Þ ^ ðGðx; yÞ ¼ 0Þ½ �

P
all x;y ðCðx; yÞ ¼ 1Þ½ �

ð10Þ

FN fraction :

P
all x;y ðCðx; yÞ ¼ 0Þ ^ ðGðx; yÞ ¼ 1Þ½ �

P
all x;y ðCðx; yÞ ¼ 0Þ½ �

ð11Þ

From the above values, it is easy to compute the accuracy

(ability to detect vessels and non-vessels) of the algorithm.

There are two other parameters that are used to measure

performance of the algorithm, namely the ability to detect

vessels (sensitivity) and the ability to detect non-vessels

(specificity) [5,24].

Accuracy, specificity and sensitivity are computed as

shown below:

Accuracy ¼ TPþ TN=FOV ð12Þ

Specificity ¼ TN=ðTNþ FPÞ ð13Þ

Sensitivity ¼ TP=ðTPþ FNÞ ð14Þ

Ideally, the performance of a segmentation algorithm

should results in small FP and FN fractions (FP, FN 0)

and large TP and TN fractions (TP, TN! 1). Following

from this, the accuracy, specificity and sensitivity perfor-

mance parameters should trend toward a value of 1.

Based on the simulation of detecting and reconstructing

retinal vasculature in 20 test images from the DRIVE

database, the fractions of TP, FP, TN, FN, and the

performance parameters (accuracy, specificity and sensitiv-

ity) are shown in table 1. It can be seen from this table that

the algorithm can detect and reconstruct vessel (sensitivity)

between 91 – 95% and non-vessels (specificity) between 88 –

94%. Over-segmentation (FP) is kept low at 6 – 16% whilst

under-segmentation (FN) is at 4 – 9%. The overall accuracy

of the algorithm is between 91% and 95%. The standard

deviations obtained for each range are small.

Figure 10. Vessel reconstruction of reference images using

GRG: (a) image A with five seed pixels; (b) image B with

five seed pixels; (c) fundus image with seven seed pixels.

440 M. H. Ahmad Fadzil et al.
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Figure 11 is a plot of TP fraction against FP fraction

depicting our test results (Fadzil-Lila) and results of other

researchers, i.e. hand-labelled by 2nd observer [21], pixel

classification [21], Jiang and Mojon [25], Zana and Klein

[4], Perez et al. [26] and Chauduri et al. [11] using images

from the DRIVE database for comparison. Given that it is

required for TP to be close to 1 and FP to be close to 0, it

can be seen in figure 11 that the proposed algorithm

(Fadzil-Lila) outperforms other methods.

Table 2 compares the developed algorithm with other

published methods based on the accuracy performance

parameter. If based on the accuracy parameter, the method

is found to be comparable to other methods such as pixel

classification [23] and by Zana and Klein [4].

4. Conclusion

In this paper, image processing techniques are applied to

extract and reconstruct the morphology of the complete

vascular structure of the retina.

The fundus image is firstly enhanced using a mean filter

followed by CLAHE and bottom-hat morphological

transformation to extract retinal vasculature (blood vessels).

It is found that CLAHE improves contrast by a factor of

more than two for objects which are located in both bright

and dark regions. A sum of bottom-hat with 12 linear

structuring elements of size 15 and at 0 – 1808 (incremental

at 158) is performed to ensure all blood vessels are extracted.

Background noise removal is then carried out to reduce

unwanted linear features at the background being enhanced

during bottom-hat. Further enhancement of vessels is then

carried out using contrast stretching.

In vessel reconstruction, a region growing technique

based on first-order Gaussian derivative (GRG) is per-

formed on the extracted retinal vasculature. GRG incor-

porates both gradient magnitude change and average

intensity as the homogeneity criteria that enable the process

to adapt to intensity changes and intensity spread over the

vasculature region. GRG thus reduces the required number

of seeds to near optimal for the region growing process in

reconstructing retinal vasculature. This overcomes the poor

performance of current seed-based methods especially for

low and inconsistent contrast images such as the vascu-

lature region in fundus images. The gradient magnitude

change in GRG is also used to identify ambiguous

boundaries between homogeneous regions and resolve the

partial volume effect (over segmentation) problem on the

boundary.

Performance analysis indicates that the accuracy, speci-

ficity and sensitivity of the algorithm on vessel detection

and reconstruction achieved ranges of 91 – 95%, 88 – 94%

and 91 – 95%, respectively. The algorithm is both reliable

and effective in detecting and reconstructing the vascular

structure of colour fundus images, given that the range of

the true positive fraction is high and the range of the false

positive fraction is low.

References

[1] National Malaysian Eye Survey, 1996, Screening for Diabetic

Retinopathy. Ministry of Health, Malaysia.

[2] Disease Center: Wrong Diagnosis, Statistics by Country for Type 2

Diabetes. Available online at: http://www.wrongdiagnosis.com/d/

diab2/stats-country.htm (accessed November 2004).

[3] Fang, B., Hsu, W. and Lee, M.L., 2003, Reconstruction of vascular

structures in retinal images. IEEE International Conference on Image

Processing, Barcelona, 14–17 September 2003, vol. II, pp. 157 – 160.

Table 1. Performance parameters obtained based on 20 test
images of the DRIVE database.

Performance parameters Range Mean Std

True positive (TP) 0.86 – 0.94 0.9070 0.0255

False positive (FP) 0.06 – 0.16 0.0900 0.0253

True negative (TN) 0.90 – 0.96 0.9400 0.0128

False negative (FN) 0.04 – 0.09 0.0600 0.0128

Accuracy 0.91 – 0.95 0.9316 0.0216

Sensitivity 0.91 – 0.95 0.9335 0.0111

Specificity 0.88 – 0.94 0.9084 0.0110

Figure 11. Graph showing TP fraction vs. FP fraction.

Table 2. Accuracy achieved by the published methods
reproduced from Niemeijer [21].

Method Accuracy

2nd observer [23] 0.9474

Pixel classification [23] 0.9416

Zana and Klein [4] 0.9377

Fadzil-Lila 0.9316

Jiang and Mojon [25] 0.9212

Perez et al. [26] 0.9181

Chaudhuri et al. [11] 0.8773

Extraction and reconstruction of retinal vasculature 441



D
ow

nl
oa

de
d 

B
y:

 [F
ad

zi
l, 

M
. H

. A
hm

ad
] A

t: 
06

:2
8 

11
 N

ov
em

be
r 2

00
7 

[4] Zana, F. and Klein, J.C., 2001, Segmentation of vessel-like patterns

using morphology and curvature evaluation. IEEE Transactions on

Image Processing, 10 (7), 1010 – 1019.

[5] Hoover, A., Kouznetsova, V. and Goldbaum, M., 2000, Loca-

ting blood vessels in retinal images by piecewise threshold probing

of a matched filter response. IEEE Transactions on Medical Imaging,

19 (3), 337 – 346.

[6] Ballerini, L., 1998, Detection and quantification of foveal avascular

zone alterations in diabetic retinopathy. Internet World Congress for

Biomedical Sciences – INABIS. On-line Proceedings of the 5th Internet

World Congress for Biomedical Sciences 1998 (INABIS) at McMaster

University, Canada, 7th–16th December. (Available online at: http://

www.mcmaster.ca/inabis98/ophthalmology/ballerini0155/two.html)

[7] Ibanez, M.V. and Simo, A., 1999, Bayesian detection of the

fovea in eye fundus angiographies. Pattern Recognition Letters, 20,

229 – 240.

[8] Li, H. and Chutatape, O., 2000, Fundus image features extraction,

Proceedings of the 22nd Annual EMBS International Conference,

Chicago, IL, 23 – 28 July, pp. 3071 – 3073.

[9] Elena, M., Perez, M., Hughes, A.D., Stanton, A.V., Thom, S.A.,

Bharath, A.A. and Parker, K.H., 1999, Segmentation of retinal blood

vessels based on the second directional derivative and region growing.

IEEE International Conference on Image Processing, 2, 173 – 176.

[10] Zhou, L., Rzeszotarski, M.S., Singerman, L.J. and Chokreff, J.M.,

1994, The detection and quantification of retinopathy using digital

angiogram. IEEE Transactions on Medical Imaging, 13 (4), 619 – 626.

[11] Chaudhuri, S., Shatterjee, S., Katz, N., Nelson, M. and

Goldbaum, M., 1989, Detection of blood vessels in retinal images

using two- dimensional matched filters. IEEE Transactions on Medical

Imaging, 8 (3), 263 – 269.

[12] Tamura, S., Okamoto, Y. and Yanashima, K., 1998, Zero-crossing

interval correction in tracing eye fundus blood vessels. Pattern

Recognition, 21, 227 – 233.

[13] Gregson, P.H., Shien, Z., Scott, R.C. and Kozousek, V., 1995,

Automated grading of venous beading. Computer and Biomedical

Research, 28, 291 – 304.

[14] Zana, F. and Klein, J.C., 1997, Robust segmentation of vessels from

retinal angiography. IEEE 13th International Conference on Digital

Signal Processing, 2 – 4 July, Santorini, Hellas, Greece, pp. 1087 –

1091.

[15] Conforth, D.J., Jelinek, H.J., Leandro, J.J.G., Soares, J.V.B.,

Cesar Jr, R.M., Cree, M.J., Mitchell, P. and Bossomaier, T., 2004,

Development of retinal blood vessel segmentation methodology using

wavelet transforms for assessment of diabetic retinopathy. Eighth Asia

Pacific Symposium on Intelligent and Evolutionary Systems, 6 – 7

December 2004, Cairns, Australia, pp. 50 – 60.

[16] Jin, Y., Fayad, L. and Laine, A., 2001, Contrast enhancement by

multi-scale adaptive histogram equalization. Proceedings of SPIE,

4478, 206 – 213.

[17] Ngah, U.K., Hai, O.T. and Khalid, N.E.A., 2000, Mammographic

calcification clusters using region growing technique. Proceedings of

the New Millenium International Conference on Pattern Recognition &

Robot Vision [TATI], 14 – 15 May 2000, Terengganu, Malaysia.

[18] Venkatachalam, P.A., Fadzil, M.H. and Devan, K.S., 2005,

Computer-aided detection and diagnosis of microcalcifications in

digital mammography. An IRPA Grant Project of University

Technology PETRONAS.

[19] Lee, Y.B., Song, S.M., Lee, J.S. and Kim, M.H., 2005, Tumor

segmentation from small animal PET using region growing based

on gradient magnitude. IEEE International Conference on Commu-

nication, 16 – 20 May 2005, Seoul, Korea.

[20] Sato, M., Lakare, S., Wan, M., Kaufman, A. and Nakajima, M., 2000,

A gradient magnitude based region growing algorithm for accurate

segmentation. IEEE International Conference on Image Processing, 3,

448 – 451.

[21] Niemeijer, M., Staal, J., Ginnekan, B.V., Loog, M. and Abramoff,

M.D., 2004, Comparative study of retinal vessel segmentation methods

on a new publicly available database. In: J.M. Fitzpatrick and M. Sonka

(Eds) SPIEMedical Imaging, 5370, 648 – 656. Available online at: http://

www.isi.uu.nl/Research/Databases (accessed January 2006).

[22] Staal, J.J., Abramoff, M.D., Neimeijer, M., Viergeer, M.A. and

Ginneken, B.V., 2004, Ridge based vessel segmentation in color images

of the retina. IEEE Transactions on Medical Imaging, 23, 501 – 509.

[23] Fritzsche, K.H., 2002, Computer vision algorithms for retinal vessel

width change detection and quantification. A proposal to conduct

doctoral study. Available online at: http://www.cs.rpi.edu/*fritzk2/

ken_candidacy.pdf (accessed February 2006).

[24] Walter, T., Klein, J.C., Massin, P. and Erginay, A., 2002, A

contribution of image processing to the diagnosis of diabetic

retinopathy—detection of exudates in color fundus images of the

human retina. IEEE Transactions on Medical Imaging, 21, 1236 – 1244.

[25] Jiang, X. and Mojon, D., 2003, Adaptive local thresholding by

verification-based multithreshold probing with application to vessel

detection in retinal images. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 25, 131 – 137.

[26] Perez, M.M., Hughes, A.D., Stanton, A.V., Thom, S.A., Bharath,

A.A. and Parker, K.H., 1999, Retinal Blood Vessel Segmentation by

Means of Scale-Space Analysis and Region Growing, Lecture Notes

in Computer Sciences (MICCAI 99), Cambridge, England, 19–22

September, 1679, 90 – 97.

442 M. H. Ahmad Fadzil et al.


